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Regression Models for Market—Shares

Summary. On the background of a data set of weekly sales and prices
for three brands of coffee, this paper discusses various regression models
and their relation to the multiplicative competitive—interaction model
(the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis
is put on the interpretation of the parameters in relation to models for
the total sales based on discrete choice models.
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1. Deterministic models.

1.1. The simple model.

Let b = 1,..., B denote the brands of a given fmcg. In our example,
the fmcg is coffee. Let (Qy denote the sales of brand b in a given short
period (a week, say) in some welldefined area (e.g. a city or a state),
and let p;, denote the (average) price of the brand b during that period.
Conceptually, our starting point is the mathematically nice — though
somewhat unrealistic — model

(1.1) Qy = eabpf*’ = exp(ap + Bp log(py)) -

describing the demand as a standard Cobb—-Douglas function of the price.
Here, 3, is the — usually negative — price elasticity, which has the
interpretation that a small relative increase of the price, say from p; to
(1+ A)py, is reflected by a decrease of the sales from Qp to (1+ B,A)Qp.
The parameter oy, the “brand strength”, aggregates all sorts of time—
independent (or at least slowly varying) properties of the brand that are
not related to the price, like quality, supply efficiency, advertising and
other marketing efforts.

To see why this model is unrealistic on a market with more or less
substitutable brands, it suffices to consider the case where all 5, are
equal. In this case, the total sales of the fmcg takes the form

B

Q. =Qi+ - +Qp=>_ exp(a,+ Blog(p))

b=1

where 3 is the common value of the ;. It follows that a small relative
increase of all brand prices py,...,pp by a factor 1+ A would result in a
relative decrease of the total sales (). by the factor 1+ SA. This means
that the total sales of the fmcg is determined by the same price elasticity
as the sales of a single brand. This is obviously not realistic. If we think
of coffee, a considerable increase of all prices is not likely to imply more
than a moderate decrease of coffee consumption. This actually happened
in 1994 and 1997, where a poor coffee harvest increased the prices on
the Danish market by about 50%, without any observable change of the
coffee consumption. Whereas, if we imagine a single brand increasing
its price by 50% independently of all other brands, we would certainly
expect that brand to disappear very quickly from the market.

Quite generally, price elasticities that describe an entire fmcg—category
will usually be smaller in absolute value than the elasticities for single
brands in that category on a market with competing brands. This can
be handled by extension of the simple model by terms that take cross—
elasticities into account. We return to this later, but let us first take
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a look at the consequences of the simple model when interpreted as a
model for market—shares only. By this we mean the following. Consider
the market—shares Sy, ..., Sp defined by

)
Qi+ +Qp

According to (1.1), these market—shares are

Sh

(1.2) S, = exp(as + By log(py))
P explak + B log(pr))

This is what Cooper (1988, 1993) calls the MCI-model (where MCI
stands for multiplicative competitive—interaction). As a model for mar-
ket—shares, it appears to be quite realistic, with the obvious reservation
that the interpretation of the parameters 3 is different from and more
complicated than indicated above. On the micro—level, the market share
Sy has a simple interpretation as the probability that a (random) pur-
chase occasion results in the choice of brand . Moreover, the multino-
mial model coming out of this — a socalled discrete choice model — can
be interpreted as a random utility model, where the customer’s choice
on each purchase occasion is the result of a maximization of a utility
function with a random error term, see McFadden (1986).

The closest competitor to the MCI model is the MNL (multinomial logit)
model, which can be written in exactly the same way, except that the
prices enter directly instead of the logarithmized prices. We prefer the
MCI model to the MNL model because it has the canonical property
that a proportional increase of all brand prices will leave the market—
shares unchanged, provided that all 3, are equal. This is not necessarily
a realistic property, but it seems more realistic than the corresponding
property for the MNL model, which is that a common absolute increase
of all prices will leave the market—shares unchanged, provided that all 3
are equal. Anyway, most of what is said in the second part of this paper
about the regression models derived from the MCI model applies as well
to the MNL model when logarithmized prices are replaced with prices.
For this reason, we lose very little by restricting our attention in the
following to the MCI model. For our illustrating data set the difference
between the two models is small, since the prices vary in a rather narrow
interval (from 22 to 37 DKK) where the log—curve is almost linear.

Until now we have only been talking about one single short period. The
estimation of the parameters «y and (3 requires, of course, that we have
observations over many such periods with varying prices. Let Qp: and pp
be observed sales and prices, respectively, for brands b =1,..., B over a
longer period divided into short periods (typically weeks) t =1,...,T.
An immediate extension of our basic model to this scenario is

(1.3) Qut = exp (0t + ap + By log(put)) -
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Here, the interpretation of the parameters a; and [, is the same as
before, and with the same reservation that the model is unrealistic and
the interpretation of 3, will change in a moment when we write down the
induced model for market—shares. The parameter d; is added to take care
of all sorts of time dependent effects that act in parallel on all brands.
In the case of coffee (and similarly for many other fmcg’s), the weekly
sales are affected by such things as weather, season of year, television
programs, non-working days etc. The implication of our assumption of
a log—additive or multiplicative effect of period and brand is that such
influences act proportionally on the sales figures for all brands, which
means that the market—shares are not affected by any time trend.

The derived model for market—shares thus becomes (since the factor
exp(d¢) cancels out)

exp(ap + Bp log(put))
ZkB:1 exp(ay + Br log(prt))

(1.4) Spe =

1.2. A model including cross—elasticities.

Cross—elasticities can be viewed as an attempt to introduce the idea that
the sales of a single brand is more price-sensitive than the aggregated
sales in the entire fmcg—category. By the introduction of cross—elastici-
ties we build into the model the property that a decrease of a brand’s
price will not only increase the sales of that brand, it will also decrease
the sales of the competing brands. To account for this, parameters v,
b,k=1,...B,b# k, are introduced in the model as follows.

(1.5) Qv = exp | 0 + ap + By log(pee) + Z Yok 10g(Pkt)
kikb

The interpretation of these cross—elasticities vpi is very similar to that
of elasticities. If brand k increases its price from pg to (1 + A)pg, the
sales of brand b will change from Q to (1 + 75 A)Qp. Hence, we would
expect cross—elasticities to be non—negative.

As a model for the total sales (Qp:, this model appears a lot more realistic
than the simple model. But it has a rather peculiar property in the case
of large price variations within brands, which indicates that it should be
used with some care.

As we can easily see, the derivative of the total sales in the fmcg—category
with respect to log(pp) is

d(Qu +---+Qpt)
108 (o) = BpQupt + k%;éb')/kakt -



Consider a situation where all brands on the market have the same
strength parameter «, the same negative price elasticity 3, and where
also all the cross—elasticities equal a common positive value v. If all
prices are also equal, the total sales will, of course, take a common
value )¢, and the expression for the derivative above will take the form
BQ: + (B — 1)vQ; . If this derivative is negative — which we expect it
to be, since an isolated increase of the price of a single brand b is not
likely to increase the total sales in the fmcg — we must have

—B
B-1"

v <

More generally, in order to ensure that this derivative is negative in a
realistic domain of variation for the set of prices, the cross elasticities
must be small compared to the direct elasticities. But the general ex-
pression for the derivative shows that if all cross—elasticities are positive,
this derivative becomes positive when Qp; is sufficiently small.

This property of the model can be described by the following scenario.
Suppose, in a situation with B brands which are relatively equal in
all respects, that (for some obscure reason) a single brand b suddenly
increases its price by (say) a factor 2. If we have a market with highly
substitutable brands and the values of the parameters are realistic, the
sales (Qp¢ of that brand will decrease to something very small. Most of
its sales will be taken over by the competitors, but the total sales of
the fmcg will probably decrease slightly. Up to this point, the model is
quite realistic, since there may be a small fraction of customers that are
extremely loyal to this brand and prefer to buy it less frequently rather
than switching to another brand. But assume now that the (by now
almost bankrupt) producer of brand b desperately decides to increase
the price again, this time by a factor 10! Now, that brand will essentially
disappear from the market (in the real world it would disappear), but
according to the model the sales of the remaining brands will increase
even more than they did when py; was doubled, due to the positive
cross—elasticities vg,. And since the sales of brand b were approximately
zero also before this desperate action, the result is that the total sales of
the fmcg will increase! This is certainly not realistic, and it shows that
the model cannot be taken as more than a local approximation. The
problem is that the price of a brand with an extremely small market—
share can still have a high influence on the sales of the others. The
immediate solution is to let very small brands influence other brands by
very small cross elasticities. But if a brand develops from large to small
(or vice versa), we have the problem. Hence, it is the assumption of
constant cross—elasticities that creates the problem.
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As a model for market-shares, this model takes the complicated form

exp (ab + Bolog(pot) + D k.kep Tok log(pkt))

25:1 exp (Oéb' + Bor 10g(Pye) + Dz o'k 10g(Pkt)>

(1.6) Sy =

Notice that this model is overparameterized in the following sense. If
for a given brand b, a constant, say k, is added to the elasticity [
and to all the cross—elasticities ygp, & # b, then the value of Sy will
remain unchanged, because this change of parameters is equivalent to
the multiplication of the nominator and all terms of the denominater by
the factor exp(x log(ppt)). This merely reflects the fact that a distinction
between an increase of the sales of brand b and a proportional decrease
of the sales of its competitors is impossible on the basis of market shares
alone. In principle, this overparametrization can be removed by the
(somewhat counter—intuitive) assumption that 3, = 0 for all b, thus
pretending that the market—shares are determined by cross—elasticities
only. However, there is no need to make this assumption, as long as
we remember that the identifiable parameters are differences 8, — Yis
and g — yre between coefficients to log(py:) in the model. The actual
elasticities and cross—elasticities are not identifiable in the model for
market shares.

This has the additional consequence, that the problem we had with
the model as a model for total sales more or less disappears. Since we
cannot measure the size of the cross—elasticities, we can — at any time
— assume that they are small compared to the direct elasticities. The
only exception from this occurs when the cross—elasticities describing a
certain brand’s influence on the other brands appear to be very different.
In this case, they cannot all be close to zero. Moreover, this means that
the brand in question can have a very high influence on the proportion
between other brands’ market shares, and this property persists even
if the brand becomes vanishing due to a suicidal price policy. For this
reason, the hypothesis that all cross elasticities vgp (kK # b, b fixed) are
equal, is an important one to be tested in the regression models in the
second half of this paper. Under this hypothesis, we may (due to the
overparametrization) formally assume that all cross—elasticities are zero,
which means that we are back in the model (1.4).

In this context, it is important to notice that (1.4) can be derived from
a model for the total sales, which appears a lot more realistic than (1.3).
This is the topic of the next section.

1.3. An alternative interpretation of the simple model.

Consider the model for the total sales



exp(ap + Bp log(pet))
exp(ag) + 2521 exp(ar + Br log(prt))

In this equation, the right hand side looks very much like the expression
(1.4) for the market shares. The important difference is the term exp(«p)
in the denominator and the multiplicative term exp(d;) in front of the
fraction. An easy way of understanding this model is in terms of a
“pseudo brand” named brand 0. “Buying brand 0” means “not buying”.
In this interpretation,

(1.7) Qe = exp(dy)

exp(ap)
exp(ag) + Zle exp(ar + Br log(prt))

is the number of units (e.g. 500g bags of coffee) that were not bought
(because they were too expensive), and the multiplicative term exp(d;) =
Qot+Q1t+- - -+ B¢ is the upper limit of the total sales Q1+ -+Qpt in
period t. Or — if you wish — the total sales of period ¢ in a hypothetical
situation, where all prices are so low that they have no influence on the
consumers’ decisions. It is easy to derive this model from a discrete
choice (multinomial) model where the choice “no brand selected” (i.e.
no purchase performed) is included.

Qo = exp(dy)

An extended interpretation of this model could be that (Qo; includes the
sales of brands that are not observed, if any. Provided that these unob-
served brands keep their prices fixed (which we are more or less forced
to assume if we don’t know anything about them), this is just a way of
collecting the terms exp(ay + Bk log(pk:)) for such unobserved brands in
the single constant term exp(agp). And, in fact, the interpretations of
“buying brand 0” as “not buying” or “buying an unknown brand” are
only the two extremes on a scale that could include psuedo—substitutes
such as buying instant coffee (or tea or cocoa) instead of coffee.

The selection probabilites in this model are the “generalized market
shares”
Qvt

Qot +Qu+ -+ Qpt’

The market shares Sp; (in the usual sense, i.e. without the additional
term for brand 0 in the denominator) take the role as conditional prob-
abilities of selecting a brand, given that a brand (on our list) is actually
selected. Accordingly, the model for market shares derived from this
model is also (1.4). But as we shall see now, (1.7) has much more re-
alistic properties than the simple Cobb-Douglas model (1.3) which was
our original justification of (1.4).

[—
St =

b=0,1,...B.

The (direct) price elasticities in this model are

_ dlog(Qut)

epp = =B (1 -5
bb dlog(pbt) /Bb( bt)
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and the cross—elasticities are

_ dlog(Que)

= = —_3.5
vk dlog(pkt) ﬁk kt

Provided that all 3, are negative (which is assumed in the following),
these elasticities and cross—elasticities (which are no longer constant)
have the signs they should have. In addition, the cross—elasticities have
the property requested in connection with the discussion of model (1.5)
(where the cross—elasticities were constant) that small brands influence
other brands via small cross—elasticities. This suggests that the model
may — as opposed to (1.6) — have the desirable property that an in-
crease of a single brand’s price can never increase the total sales on the
market. And, indeed, the derivative of the total sales with respect to
the log—price of brand b turns out to be

d(Q1+ -+ QBt)

= exp(6:)PpSs, St
dlog(pbt) Xp( t)ﬁb bt~ 0t

which is negative when [, is negative.

To investigate this model’s properties further it is useful to study its
behaviour when the prices vary from period to period in such a way
that the proportions between them is kept fixed. Thus, assume that

Dot = A\tPp

where ); is the common proportionality factor. Then the expression for
the total sales of b # 0 becomes

exp(ap + Bp log(Aeps))
exp(ag) + S0 exp(ay + Br log(Apr))

Qv = eXP(5t)

and the market shares are

_ Qbt __ exp(ap + By log(Apy))
Qe+ +Qpt szzl exp(ax + Bk log(Apr))

Sht

From the last expression we see, first of all, that if the 5, are equal, the
factor exp(flog(As)) cancels out, which means that the market shares
are constant. If all prices become extremely small, the total sales will
approach the maximal value exp(d;), and if the prices grow beyond all
limits, the total sales will fall to zero. But the market shares of the
brands are constant all the way in both cases, as long as the prices are
kept proportional.

For our interpretation of the f—parameters, a more interesting question
is what happens under extreme prices when the ’s are not equal. The
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expression for Sy; shows that if the [, are negative and pairwise distinct
and A; tends to 0, then the market share of the brand with the highest
value of || will tend to 1, all the others will tend to zero. Conversely,
if all prices tend to oo, the brand with the smallest value of |3;| will
be alone on the (very small) market in the limit. More generally, we
can say that a brand with a small value of |(p| is rather robust (as far
as market shares are concerned) in a situation where the prices increase
proportionally to a high level, whereas a brand with a high value of | 3] is
robust in a situation where the prices decrease proportionally to zero. It
is tempting to characterize the former as discount brands (even though
we cannot conclude that they have low prices) which are taking over
when all prices are so high that nobody can afford to by a decent brand,
and the latter as high quality brands which most people prefer when
they can afford it. In short, |8p| may in some respects be interpretable
as a measure of quality.

2. Statistical models.

In the following, we discuss a number of multiple regression models and
illustrate them by computations related to a data set. First of all, let us
introduce the data.

In a period of 122 weeks from June 1994 to November 1996, the market-
ing firm Millward Brown Denmark collected a data set of weekly sales
and prices of the three major coffee brands on the Danish market, which
are Gevalia (G), Merrild (M) and Karat (K). In addition, the weekly
sales and average price of all other brands (“Other (O)”) were somehow
estimated. This data set can be downloaded from

http://www.mes.cbs.dk/~sttt/Coffee.txt

Let Qat, Qme, Qre and Qop denote the sales of the four brands (in
the following we use the term “brand” also for the remainder group O).
Similarly, we let pa:, pme, P and por denote the prices.

2.1. Regression models for logarithmized sales—ratios.

A consequence of the deterministic models (1.3) and (1.7) is that the
proportion between market shares of two brands, say G and M, will
satisfy the relation

S
S—;t = exp ((ag + Pa log(pat)) — (am + Pu log(pmt)))
t
or
Sat
log % = ag — am + Ba log(pc;t) — Bum log(th) .
t



This equation suggests a multiple regression model with the logarith-
mized proportion between the two brand sales as the dependent vari-
able and the two logarithmized prices as explanatory variables. Thus,
we consider the model

S
(2.1) log —S;t = ag — am + B log(pat) — Pum log(pme) + €4
t

where the error terms g; are assumed to be i.i.d. N(0,0?). The estimates
in this model become

Parameter Estimate Std.dev. T P
ag — oM —0.09 1.342 —0.065 0.948122
Ba —5.026 0.5723 —8.782 0.000000
Bum —4.971 0.5991 —8&8.298 0.000000

As we can see, the estimates of Sg and Py are very close to each other.
A simple T—test for the hypothesis fg = fm results in a T—value of
-0.1384, which is certainly insignificant. Thus, we can reduce to the sim-
ple regression model with only one explanatory variable log(pat/pmt), in
which the estimate of the common 3 becomes -5.004. Which means, for
example, that if Gevalia doubled its price independently, the proportion
Sa /Sy would shrink by the factor 275-004 ~ 1/32.

16

0.0

-16 -
-0.2 0.0 0.2

Figure 1. log(Qgt/Qwm:) against log(pat/pme)

Figure 1 shows the scatter plot corresponding to this simple regression.
Notice that there is no indication of variance heterogeneity. This is a
topic that we have not mentioned before, but actually it is not a trivial-
ity that a model with constant variance should be used here. If we had
reasons to believe in the multinomial model, derived from the interpre-
tation of the counts Qp: as sums of independent binary variables (the
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discrete choice model), we would expect a variance derived in some com-
plicated manner from the variance—covariance matrix of the multinomial
distribution. Thus, if variance heterogeneity had been a problem, the
standard solution would be to use a weighted regression with weights de-
fined as suitable functions of the prices. Or, perhaps, a more advanced
model with a variance specified as a function of the mean. However,
the multinomial variation is not the dominating source of variation in
this case, since the counts QQy; are very large and the statistical vari-
ation stems from many other sources than multinomial variation. In
other words, if we estimated the multinomial model directly we would
almost certainly run into problems with heavy over—dispersion (we ac-
tually tried it and found an over—dispersion corresponding to a scale
parameter of 120!). For this reason, there is no point in introducing
more complicated variance structures as long as the variance appears to
be constant. The scatter plot clearly confirms this, and so do various
diagnostic tests that we shall not report here. We shall not mention this
subject again for the models that are analyzed in the following, but we
can assure the reader that all sorts of model checks have been made,
and they all confirm that variance homogeneity can be assumed in these
models.

We are not going to repeat this analysis for all the remaining pairs of
brands, but for illustrative purposes we take a look at one of them,
namely the model for the logarithm of the proportion between the sales
of Gevalia and Karat. In this model, we obtain the estimates

Parameter Estimate Std.dev. T P
ag — K 4.48 1.333 3.359 0.001051
Ba —4.719 0.6383 —7.393 0.000000
1577 —3.597 0.5870 —6.127 0.000000

The difference between the estimates of Sg and Pk is greater this time,
and actually the T—test for g = Pk results in a rather convincing
rejection (T = —2.828, P = 0.0055). According to our interpretation of
the model as a consequence of model (1.7), a possible explanation of this
could be that most customers consider the quality of Karat lower than
the quality of Gevalia. This is consistent with the fact that the average
price of Karat over the period was 4% lower than the corresponding
average for Gevalia, whereas the market share of Karat was, on average,
only 57% of Gevalia’s share. However, another — probably more realistic
— explanation is that Karat is a local product, produced in Aalborg,
and accordingly protected by a large group of highly loyal consumers in
Northern Jutland.

With the cross—elasticity model (1.5) as our starting point, we obtain —
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in exactly the same way — the regression model

Sat
log — = ag — - lar — — [
(2.2) 0g g~ =0a—om+ (fo —mme)ler = (B = vem)h
+ (Yak — YMK)Ikt + (Yao — Ymo)lot + €t

for the logarithmized ratio between the market shares of Gevalia and
Merrild. Here, we have introduced the short notation I for log(ppt).
From a statistical point of view, this is just an extension of the multiple
regression model (2.1) by two additional explanatory variables which are
the logarithmized prices of the other competitors on the market. But the
interpretation of the parameters is different. For illustrational purposes,
we prefer to consider the corresponding model for Gevalia and Karat,

Sat

log ——
8 Skt

= ag — ok + (Be —7ke)lat — (Bx — YeK)Ike
+ (yam — vrm)Imt + (Yeo — Yko)lot + €t

The OLS—estimates in this model are

Parameter Estimate Std.dev. T P
ag — K 4.65 1.470 3.166 0.001971
Ba — YKa —4.603 0.6977 —6.597 0.000000
BK — YGK —3.705 0.6787 —5.459 0.000000
YGM — VKM —0.384 0.8004 —0.480 0.632204
GO — VKO 0.120  0.5617  0.213 0.831404

As we can see, the two explanatory variables log(pm:) and log(po) are
insignificant, and the relevant F-test shows that they are actually jointly
insignificant (P=0.12), which means that they can be removed from the
model. Thus, we are back in the model for Gevalia and Karat corre-
sponding to (2.1). But the interpretation of the parameters is different
this time, and this suggests an alternative explanation of the significant
difference between the coefficients to lg; and [k¢. In the present model,
this difference means that we have 8¢ —vkae < Bk —7Yck. Hence, there is
no need to assume Bg < Pk, the explanation may as well be that we have
YKG > VoK, which would be in accordance with our earlier remark that
small brands should influence other brands by small cross—elasticities.

As to the hypothesis yam —YkM = Yco —vko = 0, which we did accept,
this can be regarded as a partial version of the hypothesis that any brand
influences the sales of all other brands by the same cross—elasticity. As
mentioned earlier, this is a necessary property if the model should be
valid in extreme situations, where a brand becomes very small due to
high prices. If the price of such a brand affected two other brands
with different cross—elasticities, we would be in the situation where the
proportion between market shares for these two other brands would
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be very sensitive to the price policy of an extremely small competitor,
which seems rather unrealistic. What we can see from our analysis is
that neither the price of Merrild or the (average) price of the remainder
group seem to be able to influence the proportion between the market
shares of Gevalia and Karat.

By performing similar analyses for all the 6 pairs of brands, we could,
in principle, perform all the pairwise comparisons required to confirm
this hypothesis. But it would obviously be better to do this by a single
test. For this and many other good reasons, it is better to analyze a
data set like this by a model where the log—sales of all brands constitute
the vector of responses, and where the log—prices of all brands occur as
explanatory variables. This is the topic of the next section.

2.2. Regression models for the logarithmized sales.

A model for the sales of all brands can be derived from (1.5) in the
following way. Instead of removing the week effect by formation of log-
ratios between the sales of two brands, we simply include the week—to—
week effect as a factor on 122 levels in a model for the logarithmized
total sales,

(2.3) log Que = 0+ + By log(pe) + Y Yok 10g(Pre) + €t
ikt

It is not difficult to see, that this is a generalization of (2.2) to the case
B > 2. Actually, we get the same estimates as above of the parameters
related to Gevalia and Karat. The difference is that we now have all
brands in the same model, with the same variance. Notice that it is really
a matter of taste whether we take log Qs or log Sy as the reponse, since
these two variates differ only by log () ; which is absorbed by the model
term d; anyway (see Nakanishi and Cooper 1982, who propose essentially
the same model under the label “dummy variable regression”).

This model has a lot of parameters (122 week parameters d;, 4 direct
elasticity parameters [, and 12 cross elasticity parameters ), but the
week parameters should be regarded as nuisance parameters here, and
the most interesting hypothesis is that the v, are independent of b,
which formally implies that they can be set to zero. The estimates of
the parameters of interest in this model are
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Parameter Estimate Std.dev. T P

Ba —yme ~ —4.862  0.6116 —7.951 0.000000
Be —vke ~ —4.603  0.6116 —7.527 0.000000
Ba —voc  —3.316  0.6116 —5.423 0.000000
Bm —yem  —5.764  0.7016 —8.216 0.000000
Bu—vkMm  —6.148  0.7016 —8.764 0.000000
Buv—vom  —4.500  0.7016 —6.414 0.000000
Bk —vek ~ —3.705  0.5949 —6.228 0.000000
Bk —ymx  —3.808  0.5949 —6.402 0.000000
Bk — Yok —3.418  0.5949 —5.747 0.000000
Bo —vao  —0.737  0.4923 —1.497 0.135302
Bo —vmo ~ —1.803  0.4923 —3.663 0.000288
Bo —vko  —0.617  0.4923 —1.254 0.210851

Notice, for example, that the estimate —4.603 of g — Ykg is the same
as we found in the analysis of log(Sgt/Skt). However, the standard
deviation has changed slightly, since we are now working under the as-
sumption that the variance is the same for all 4 brands.

The tests presented in this table are not particularly relevant. The tests
of interest are those corresponding to the hypothesis that the price of
each brand influence the sales of the others by the same cross—elasticity,
which corresponds to the phenomena in the table that the first three
estimates are approximately identical, the next three also, etc. Formally,
this hypothesis is equivalent to the hypothesis that the 4’s can be set to
zero. But the relevant F—test for this hypothesis shows that it can not
be accepted (F(8,351)=5.305, P=0.000003).

From the table of estimates, we can see that the most pronounced de-
viation from this hypothesis is that parameters of the form 3, — vy (b
fixed) tend to be smaller when & = O than when k£ is a proper brand.
For example, the price of Gevalia has more influence on the market share
of Merrild and Karat than it has on the share of the remainder group.
This is, perhaps, not surprising, since the aggregation of all other brands
to a single group has some unpredictable consequences. The remainder
group seems to contain brands with very loyal consumers, like brands
associated with specific supermarket chains etc.

For this reason, we repeated the analysis for the three “proper” brands
only. Notice that this is consistent with the model, since the derived
model for the three brands and their market shares has exactly the
same form as the one where “Others” is included as an additional brand
with constant price. What we are doing here is just to pretend that we
do not know about the sales and prices of “Others”, thus including the
sales of other brands in the category “not buying” (brand 0). The only
problem with this is that we may lose some information when we ignore
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the average price for other brands. The estimated log—price coefficients
in a model with only the three proper brands are

Parameter Estimate Std.dev. T P
Ba — YMG —4.864 0.6503 —7.480 0.000000
Ba — YKG —4.603 0.6503 —7.078 0.000000
Bm — YaM —5.139 0.6800 —7.558 0.000000
BMm — VKM —5.453 0.6800 —&.020 0.000000
BK — YGK —3.730 0.6226 —5.991 0.000000
BK — YMK —4.061 0.6226 —6.523 0.000000

As we can see, these estimates are approximately pairwise identical, and
the F—test for the hypothesis

YMG = YKG, YoM = VKM and ygk = YMK

actually confirms this (F(3,236) = 0.285, P=0.84). Thus we are back in
the simple model (1.7). If, in this multiple regression model we add a
term of the form 7,0 log(pot), it becomes slightly significant (P=0.035).
Hence, it is more or less a matter of taste whether this term should
be included or not. We prefer to draw the conclusions in the model
without this term. Hence, our final model is (1.4). The estimates of the
parameters of interest in this model are

Parameter Estimate Std.dev. T P
oG — oK 4.52 1.217 3.717 0.000251
aM — OK 4.82 1.263 3.815 0.000173
Ba -5.013 0.4485 —11.176 0.000000
Bum —5.019 0.4695 —10.691 0.000000
155% —3.880 0.4144 —9.364 0.000000

In this model, the hypothesis g = fu = Pk can not be accepted
(P=0.0017), whereas it can obviously be accepted that Sg = fm. Again,
Karat seems to behave differently from the two other brands.

2.3. The inclusion of other covariates.

The general model (2.3) can easily be extended by the inclusion of other
explanatory variables. If, for example, we had been in the possession of
measures ap; of the advertising efforts for brand b in period ¢, a straight-
forward extension to

(2.3) log Que = 0¢+cp+ By log(pue) + Y Yok 10g(Dre) + 16 log(ane) +ene
Kikb

would enable us to analyse the effect of advertising. A hypothesis to
be tested in this context could be the assumption of equal advertisment
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effects n@ = nu = 1k, which would mean that a proportional increase
or decrease of the advertisment efforts for all brands would leave the
market shares unchanged. This model is not quite realistic, since a
brand with essentially no advertisment expenses might actually be able
to survive on the market. Perhaps a more realistic model should have
apt unlogarithmized in the linear expression. However, since we do not
have such data, we shall resist from a discussion of this. This is just
an example, and our point is merely that any covariate of potential
relevance for the market shares can be included in the model. Covariates
associated with brand and week can be included directly as above. For
covariates representing market conditions that are common to all brands
and depend only on the week, the inclusion makes sense only if these
covariates occur in interaction with brand, i.e. with a separate coefficient
for each brand, just like the term 0 log(po) that was added to the final
model in the previous section. Otherwise such effects will be confounded
with the general time trend parameter d;. A modification in a quite
different direction would be to replace d; with week—associated effects
(seasonal trends, indicators for special events etc.), but this is beyond
the scope of the present paper.

As an illustrative example, we can try to extend the final model of the
previous section with an explanatory variable that we do have, namely
the vector of lagged prices. Thus, the idea is that the sales of a given
brand in a given week is not only affected by the prices in that week,
but also by the prices in the week before. This model can be written

log Qv = 61 + ap + By log(pee) + 1 10g(Pe,e—1) + €bt -

In fact, we have skipped a few steps here in assuming that the corre-
sponding “lagged cross—elasticities” vanish. Anyway, the estimates in
this model are

Parameter Estimate Std.dev. T P
ag — ag 4.24 1.201 3.532  0.000497
aM — OK 3.77 1.250 3.015 0.002855
Ba —5.188 0.5508  —9.419 0.000000
B —5.802 0.5793 —10.016 0.000000
Bk —4.020 0.4980 —8.072 0.000000
NG 1.931 0.5565 3.470 0.000619
M 2.747 0.5704 4.816 0.000003
NK 1.832 0.4946 3.704 0.000265

At first sight, it may appear a bit surprising that the lagged prices are
actually significant. One would hardly expect that many customers be-
have according to the prices they saw last week. But as we can see, the
“lagged price elasticities” 7, are positive, and a straightforward expla-
nation of this phenomenon is that customers fill up their private stocks
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when prices are low and consume the stocks when prices are high. Since
private coffee stocks are usually rather limited in size, this means that
a change of the price from one week to the next will result in a kind of
overreaction. If we rewrite the model as

log Qut = 0¢ + o + (B + ) log(pre) + mp log (%) + ept -

it becomes more transparent what is going on. The parameter 5y + n is
the true elasticity, in the sense that it determines the dependence of the
equilibrium price in a period where the price is kept constant, so that
log % = 0. The parameter 1, determines the short—term reaction on
a price change. This actually means that the “long—term elasticities” are
smaller in absolute value than suggested by the estimates in the model
without lagged prices. A phenomenon which should certainly be taken
into account when the estimated model is used as a strategic tool for
optimization of price policy. We have tried to include the double-lagged
prices also (i.e. the prices from two weeks before), but their estimates
turned out not to be significantly different from zero.

References.

Cooper, Lee G. and Nakanishi, Masao (1988).
Market—Share Analysis.
Kluwer Academic Publishers.

Cooper, Lee G. (1993).

Market—Share Models.

in Handbook in Operations Research and Management Science vol. 5
(Marketing, ed. J. Eliashberg and G. L. Lilien), 259-314.

D. McFadden (1986)
The choice theory approach to market research
Marketing Science Vol. 5 pp 274-297.

Nakanishi, Masao and Cooper, Lee G. (1982).
Simplified Estimation Procedures for MCI Models.
Marketing Science Vol. 1 pp 314-322.

Kristina Birch (kristina@cbs.dk), Center for Statistics
Jorgen Kai Olsen (jko.marktg@cbs.dk), Department of Marketing
Tue Tjur (tuetjur@cbs.dk), Center for Statistics

Copenhagen Business School
Solbjerg Plads 3

2000 Frederiksberg
DENMARK

17



