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Abstract
The following situation is considered. A single binary response and a number of ex-

planatory variables are given, and we want to estimate the influence of these on the
response. But a simple logistic regression model can not be used because the observations
occur in clusters, and responses in the same cluster are not likely to be independent. We
study and compare two different approaches to the analysis of such data. (1) A two–stage
model, where within cluster effects are estimated by a logistic regression model condi-
tioned on sums of responses over clusters, and between cluster effects are estimated by
an analysis of these sums by a binomial overdispersion model. (2) A logistic regression
model with random (normal) cluster effect. Results from these two models are compared.
We introduce these models with reference to a small example from marketing, where clus-
ters are households, the single events are purchases of chocolate bars, the responses are
indicators for the event that the brand selected was Mars, and the only explanatory vari-
able is a measure of exposure for Mars commercials. In section 5 we illustrate by a more
substantial data set from a survey concerning malnourishment of children of preschool
age in rural areas of Mexico, where the clusters are towns, the response is an indicator
of undernourishment, and the explanatory variables represent socioeconomic information
about the children and their families.

Key words: Conditional logistic regression; Clustered survey data; Generalized linear
mixed models; Binomial regression; Overdispersion.

1. Introduction

It is wellknown (see e.g. Birch 2002, Tjur 2002) that logistic regression in clustered
data — in some contexts also called longitudinal data, panel data, or single source
data — can produce serious inference errors when heterogeneity between clusters is
ignored. In its most extreme form, this kind of error occurs when a few persons are
asked essentially the same question again and again, and the data coming out of
this are analysed as a representative sample, pretending that the question was posed
to a new person each time. Obviously, a relevant model for such data must take
into account that the persons are likely to give the same answer each time they are
asked, which means that the responses can not be regarded as independent, unless
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the model includes an individual parameter for each person. But in more complex
designs this is less transparent, and for marketing applications in particular it is
not always recognised how serious this error can be. What happens is typically
that explanatory variables with no effect at all on the binary response appear to be
strongly significant. See Tjur (2002) for a simulation study illustrating this.

The data set we will use for illustration is taken from the British AdLab data
base, created by Central Independent Television 1985–90 (see Moseley and Parfitt
1987), kindly made available to us for research purposes by Flemming Hansen, Cen-
ter for Marketing Communication at Copenhagen Business School. The data set,
which has been extracted from the data base by Lotte Yssing Hansen and further
prepared by Kristina Birch, consists of all purchases of chocolate bars over obser-
vation periods of varying lengths, made by 560 households, adding up to a total
of 11,246 such purchases, i.e. around 20 purchases per household on average. The
binary response is defined as 1 if the chocolate bar happens to be a Mars Bar, 0
otherwise. The only explanatory variable considered here — called x in the following
— is constructed as a weighted average of the counts of television and radio adver-
tisements for Mars Bar that the household was exposed to on day 1, 2, . . . , 28 before
the purchase. The weights used in this averaging are proportional to 0.95d, where
d is the number of days passed since the advertisement. A lot of details concern-
ing data structure, other background variables, the choice of 0.95 as the “retention
rate” etc. are left out here, because they are irrelevant to the general ideas discussed.

The result of an ordinary logistic regression analysis with “Mars/not Mars” as
the binary response y and a logit–linear structure consisting only of a constant term
and a linear effect of the above mentioned variable x (ignoring differences between
households) results in the following conclusions. The estimated probability that the
hth household’s ith purchase result in the choice of a Mars Bar is

P (yhi = 1) = Λ(−0.8548 + 0.02007× xhi)

where — here and in the following — Λ denotes the function Λ(z) = exp(z)/(1 +
exp(z)), the c.d.f. of the logitistic distribution. The approximate standard deviation
of the estimate 0.02007 is reported to be 0.0044. Thus, the coefficient appears to be
strongly significantly positive (p=0.000005).

2. Conditional logistic regression

The obvious problem with the analysis above is that it does not take into account
that households have different preferences. One can easily imagine that some buy
Mars Bars all the time and some buy other brands all the time, rather independently
of the number of Mars commercials they happen to have seen. This would not be
a problem in a design where each household is observed once, but when several
purchases are observed for each household, the differences between households will
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most likely be a lot larger than the random variation can explain.

A simple way of accounting for this is by the introduction of 560 household
parameters αh, describing these differences. Thus, a much more relevant model
would assume that the probability of success in the ith purchase for household h
takes the form

P (yhi = 1) = Λ(αh + β × xhi). (1)

The simplest and best way of estimating this model — since we are not particu-
larly interested in the 560 household parameters — is by conditional logistic regres-
sion. By conditioning on the numbers of successes for each household, we obtain
an expression for the conditional likelihood, where the household parameters αh

have cancelled out. This approach is usually recommended when it is numerically
possible, see e.g. Breslow and Day (1980). This analysis results in the following
conclusion. The estimated probability that a given purchase of chocolate bar results
in the choice of a Mars Bar becomes

P (yhi = 1) = Λ(αh + 0.00802× xhi).

But here, an approximate standard error of 0.00795 on the coefficient 0.00802 is
reported, which means that it is not significantly positive (p=0.31).

This conclusion is obviously more reliable than the one we ended up with in
section 1. But the drawback of this model is that it can only measure the effect of
the variation of x from purchase to purchase within households, where it is relatively
constant. The effects of the (probably much more pronounced) differences between
x levels for different households can not be measured, because these differences are
confounded with the differences between the individual household parameters. This
problem would be even more obvious if we had a covariate that was constant within
households (like number of children, age of mother or whatever). The effect of this
would simply cancel out when we form the conditional likelihood.

3. An overdispersion model for the cluster totals

There are two ways in which the exposure to Mars commercials could influence
the household’s tendency to buy Mars Bars, namely

1) Within households. If a household is heavily exposed to Mars advertisements, it
tends to buy more Mars Bars than usual in a period thereafter.

2) Between households. Those households that are exposed to many Mars commer-
cials buy, on average, more Mars Bars than those exposed to few Mars commercials.

These two types of exposure effect correspond closely to “within blocks” and
“between blocks” effects in classical analysis of variance. There is no reason to
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expect that they are equal in any sense. The conditional logistic regression model of
section 2 is the natural analogue to the classical “intra–blocks analysis” in a block
design. What remains to be done is the “between blocks analysis” or “recovery of
inter–blocks information”, which in the classical ANOVA setup can be done by a
linear model for the block totals. The analogy suggests that we supplement the
conditional logistic regression model with a model for the cluster totals, in this
case the total numbers of Mars purchases for each household (i.e. the numbers
conditioned on in section 2),

yh. = the number of Mars purchases for household h .

A simple, almost canonical (but slightly too naive) model is the one that assumes
these counts to be independent, binomial with binomial totals nh = the total number
of purchases for household h and probability parameters depending logit–linearly of
the households’ average exposures to Mars commercials. Indeed, if the probability
of success varies only little from purchase to purchase, the response yh. will be a sum
of nh indicators that are approximately identically distributed. The only problem
is — again — that the success probability can be expected to vary much more from
household to household than the variation in advertisment exposure and the bino-
mial variation can account for. However, this is a standard problem with a standard
solution; a simple model that takes this extra variation into account is the overdis-
persion model corresponding to this binomial model, where the expected responses
are assumed to be of the same form as in the binomial model, but the binomial
variances are modified by a common scale factor (the overdispersion parameter).
See McCullagh and Nelder (1989). Following Tjur (1998), we can formally think of
this as a non–linear regression model that assumes the household totals yh. to be
approximately normal with expectations of the form

E(yh.) = nhπh = nhΛ(α + β × xh.)

and variances λnhπh(1−πh), where λ, the overdispersion factor, is a common squared
scale parameter. For λ = 1 we have the binomial model. Other variance structures
might be considered, but this is by far the simplest, and the nice thing about it
is that it results (for a suitable choice of estimation method, the IRLS method or
quasi likelihood) in the same estimates of the covariate effects as the binomial model.

The conclusion of this model is as follows. The estimated expectations of the
responses yh. become

Ê(yh.) = nhΛ(−0.965 + 0.0437× xh)

where xh denotes a suitably defined average over time of household h’s exposure to
Mars advertisements. The test for “no effect of x” shows weak significance (p =
0.034 two–sided). This test is a T–test, correcting for overdispersion and estimation
error for the overdispersion parameter. There is a strong overdispersion (λ̂=8.66),
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corresponding to a standard deviation which is almost three times that of the bino-
mial model.

Thus, the overall conclusion of the two analyses is that an effect of Mars adver-
tisments on the tendency to buy Mars bars is hardly visible in this study.

4. A logistic regression model with random cluster effect

Another way of modelling variation between households, which is more in accor-
dance with modern thinking around random effects in generalized linear (or general
nonlinear) regression models is to introduce the household effect as a random effect
in the logistic regression model. That is, to replace the 560 household parameters αh

in formula 1 with 560 i.i.d. normal variables Ah with expectation α0 and variance
σ2. This is a straightforward generalization of the variance component model known
from the linear case; which, in turn, is the modern way of justifying the classical
method for recovery of interblock information in the linear case.

We shall not report the results of this model because there is a conceptual prob-
lem with it. Namely that it does not split up the effect of x in a within household
and a between household component. In the examples that we know of, this makes
no particular sense. We would prefer, as the starting point at least, a model with
separate sets of parameters describing the two types of effects. A solution to this
problem, suggested by Neuhaus and Kalbfleisch (1998), is to replace the covari-
ate xhi by its two components, the “between households component” x̄h. and the
“within household component” xhi − x̄h.. The coefficient to the first of these will
then somehow measure the variation between households, and the coefficient to the
second will measure the variation within households. Thus, our model states that,
conditionally on the random household effects Ah, the binary observations yhi are
independent with

P (yhi = 1) = Λ(Ah + βbetween × x̄h. + βwithin × (xhi − x̄h.)) (2)

where, in turn, A1, A2, . . . , A560 are i.i.d. normal with mean α0 and variance σ2.

This model was fitted by an approximate maximum likelihood method integrated
with an adaptive Gaussian Quadrature as integration method implemented in SAS
procedure NLMIXED. The result of this, together with the corresponding results
from section 2 and 3, are found in table 1. The conclusion from this seems to be
as follows. There is a close agreement between the results from the conditional
logistic regression model and the estimated coefficient to xhi − x̄h. in the random
effects model. The reason for this is probably that the conditional logistic regression
model can also be interpreted as the conditional model in the random effects logis-
tic model, because here the contribution from the household averages x̄h. and its
coefficient cancels out, leaving us with exactly the same conditional likelihood as in
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section 2. If we imagine the total likelihood written as a product of this conditional
likelihood and the marginal likelihood based on the observed household sums yh., it
is rather obvious that the last factor can not contribute much to the estimation of
the coefficient to xhi− x̄h.. Intuitively, at least, it is hard to imagine how the house-
hold sums yh. can provide us with any information at all about the advertisment
exposure effect which is due to variation over time within households. Consequently,
the information that the model gives us about this comes almost exclusively from
the conditional likelihood, which is the same as in section 2.

Conversely, columns 2 and 4 in table 1 show no overwhelming agreement between
the results from the overdispersion model of section 3 and the random effects model’s
estimate of the coefficient to x̄h.. Not that the results are conflicting, in the sense
of significantly different conclusions, but the figures indicate that we have two quite
different models here. Analyzing this a little further, it can be seen that there
is actually no reason at all to expect similar results from these two models. The
distributions of the sums yh. in the two models differ both in mean and variance. For
the variance component model, the expected value of yh. is approximately, under the
simplifying assumption that the effect of xhi − x̄h. is small, so that the observations
within households are almost i.i.d.,

nhF (α0 + βbetweenx̄h.)

where F is the c.d.f. of the convolution of the logistic distribution with a normal
distribution with mean 0 and variance σ2. Whereas the expression for the mean
of yh. in the overdispersion model of section 3 is (approximately, under the same
simplifying assumption)

nhΛ(α0 + βbetweenx̄h.) .

From this it follows that if the parameters were the same in the two models, the
expected value of yh. as a function of x̄h. would be a more flat function in the
random effects model than in the overdispersion model, in particular for large σ2.
Moreover, the variances are also different in a fundamental way. For example, the
variance of the relative frequency yh./nh tends to zero as nh tends to infinity in the
overdispersion model, whereas in the random effects model this limit is positive,
because the contribution from the random variation of Ah does not disappear in the
limit. Thus, for a number of good reasons, the estimated regression coefficients from
the two models are not comparable.

5. A second example: clustered survey data

The problem that partly motivated the present report was the statistical analysis
of data from the 1996 National Survey of Nutrition in preschool children in Rural
Mexico (ENAL96). One of the objectives of the study was to determine the relation
between undernourished children of preschool age and some socioeconomic aspects
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of the family, in rural areas of the country.

There are three standardized measures on the children that could be used to
reflect undernourishment: weight for age (wfa), weight for height (wfh), and height
for age (hfa). With the advice of the specialist interested in the study, we selected
wfa as response variable, and selected 20 explanatory variables, which reflected mea-
sures on the child, the mother, the father, and the house. We analyzed the data
and constructed some composed indices that summarized aspects of the house, the
mother, and the father, respectively. These composed variables showed that most
of the information from the parents is conveyed by the mother alone, and also that
it was preferable to work with the original variables rather than with composed
variables.

In the analysis presented in this report, we considered a binary response variable:
y=0 when wfa > -2 which is considered a score for a normal or mildly undernourished
child, and Y=1 when wfa ≤ -2, a score for an undernourished child. We selected
eight explanatory variables of which three are considered as continuous: food ex-
penses per capita per week (Food expenses), number of persons per room in the
house (Persons per room), and child’s mother age at birth (Mother’s age); and five
considered as binary: material on the house’s floor (No floor layer: 1 no layer, 0
some material); availability of latrine with running water (No wc: 1 no availability,
0 yes); availability of gas cooker (No gas cooker: 1 no gas cooker, 0 yes); formal
schooling of the mother (Mother with no schooling: 1 none or incomplete primary
school, 0 primary school or more); and mother’s language (Bilingual mother: 1 di-
alect or, dialect and Spanish; 0 only Spanish). The response variable was originally
measured in a scale that goes from -5 to 5; the five explanatory binary variables
were originally defined for more than two categories, and adjacent categories were
collapsed to obtain binary variables.

The sample design and estimated proportions for three categories of malnour-
ished preschool children for each state and for the whole country are presented in
Avila et al. (1997). Dr. A. Avila Curiel kindly gave permission to use the data
for research purposes. The sample design was stratified with three sampling stages.
The target population was the population in rural areas of Mexico, defined as the
population contained in towns of less than 2,500 inhabitants, excluding new small
towns developed as residential areas. Roughly speaking and according to the 1995
population count, there were about 95 million inhabitants in the country distributed
by town size as follows: 10 millions in towns of size 1–499, 13 millions in towns of
size between 500 and 2,499, and 72 millions in towns larger than 2,499. For practical
and cost reasons the sample was taken from the population contained in towns of
size between 500 and 2,499, and we will refer to this as the rural population.

The target population was stratified in 372 strata. One strata contained only
one primary sampling unit and it was collapsed with one of its neighbours’ strata.
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Within each stratum between two to four towns were selected with simple random
sampling; a total of 854 towns or clusters were sampled and correspond to the pri-
mary sampling units. Due to missing values the analysis is based on 853 towns.
Within each town, between 2 and 49 households were sampled, this produced a to-
tal of 38,232 households, we refer to them also as families and they constitute the
secondary sampling units. Within each family, a sample of one to three preschool
children were selected, this gives a total of 31,601 children in the sample. In the
three sampling stages, the selection of sampling units was done by simple random
sampling. The data set was filtered, considering cases with children satisfying three
conditions: age less than or equal to 5 years, mother’s age between 12 and 50 years,
and weight for age score between -5 and 5. That makes a total of 26,819 children.

For the estimation of parameters of the models presented in this report, we con-
sidered only one randomly selected child per family, which gave 18,774 children or
families, after deleting missing values for the 8 selected explanatory variables, the
models were adjusted using 17,865 children contained in 853 towns.

The sampling weights or expansion factors, and stratification, though available
and used to compute descriptive statistics like means and proportions, were not used
for the determination of associations between variables.

To analyze the data, as a first step we adjusted a logistic regression conditioning
on the sums of malnourished children for each cluster or town. Here we assume
that the observations on children from the same town are correlated. The number
of malnourished children within a town varies from 0 up to the total number of chil-
dren in the town, nh, though in the likelihood function of the conditional regression,
only towns with malnourished children varying from 1 up to nh − 1 are considered,
these were 714 out of 853. The coefficients adjusted in the conditional logistic re-
gression, formula (1), measure the association between the explanatory variables
and the probability of one child being undernourished in a given town, that is the
within towns effects.

The estimated coefficients, displayed in column 3 in table 2, show that five vari-
ables have a significant effect on the response variable (p < .01), variable No wc has
a non significant effect, whereas Food expenses and Mother’s age are only sligthly
significant (.01 < p < .05).

In a second step, in order to estimate the between towns effects, we adjusted
an overdispersion binomial model on the cluster sums for the response and cluster
means for the explanatory variables, that is on 853 observations. The squared scale
parameter λ was estimated as 1.3 reflecting a slightly larger dispersion than a bi-
nomial model could account for. Estimated coefficients, displayed in column 2 in
table 2, show the following. Two variables have no significant effect on the response
variable, Mother’s age and No floor layer, variable No gas cooker is only slightly
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significant (.01 < p < .05), and the other five variables are significant (p < .01)
including No wc whose within towns effect is not significant.

Considering the effects of the explanatory variables on the response, estimated
separately as within and between towns, columns 2 and 3 in table 2, we observe that
although estimated within and between towns effects for each variable have equal
sign, four different patterns actually occur:

a) Both effects are significant, p < .01, and their confidence intervals overlap; as
in variables Persons per room, and Bilingual mother

b) One effect is significant or slightly significant and the other is not. As in
variables Mother’s age, No floor layer, and No wc.

c) One effect is significant, p < .01, and the other is only slightly significant
(.01 < p < .05); as in variables Food expenses, and No gas cooker.

d) Both effects are significant and, though with equal sign, their confidence in-
tervals do not overlap; as in variable Mother with no schooling where the between
towns effect is about 3 times larger than the within towns.

We also observe a larger variability in the between towns effects than in the
within towns in all variables except in variable Bilingual mother.

As an alternative to measure within and between towns effects, we adjusted
a logistic regression model with random cluster effect (intercepts), as it has been
suggested before for data from cluster sampling, by e.g. Agresti et al. (2000, sec.
3.8), but with two sets of parameters, one for the between towns effects attached
to cluster mean values, and the other for the within towns attached to deviations
from cluster mean values. The estimated variance for the normal distribution of the
random effect was σ̂2 = .28, which shows a small variation. Estimated parameter
values and standard deviations are presented in the last column of table 2 and esti-
mated 95% confidence intervals are displayed in figure 1. We observe that estimated
effects and standard deviations are similar to the corresponding ones estimated by
a conditional regression and an overdispersion model, as described in a) - d); except
for the between towns effect in variable No gas cooker which is not significant under
the random effects model and is slightly significant under the overdispersion model
(.01 < p < .05).

Numerically, parameters measuring within towns effects estimated under a con-
ditional logistic regression are very close to the corresponding ones under the logistic
regression with random intercepts, and even more similar are their standard devia-
tions. Parameters measuring between town effects estimated under an overdispersion
binomial model are similar to the corresponding ones under the logistic regression
with random intercepts, and standard deviations are slightly larger under the logis-
tic regression model with random intercepts.

When we adjusted a random intercept model, we made a statistical test for equal
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between and within towns effects for each of the eight explanatory variables, and we
found the following. i) The effects are statistically different for two variables: No wc
(two sided test, p = .004 , delta method for variance estimation) and Mother with no
schooling (p = .001), though in the first one the within towns effect is not significant;
ii) the effects are statistically different with .01 < p < .05, for the two variables Food
expenses and Persons per room and iii) the effects can be considered as equal for
the other four variables, Mother’s age, No floor layer, No gas cooker, and Bilingual
mother, though, in the first three the between towns effect is not significant.

6. Discussion

Our study suggests that, as far as within cluster effects are concerned, there is very
little difference between the two models considered. But when it comes to between
cluster effects, the two models are different and difficult to compare, in particular if
the overdispersion and the variance σ2 of the random cluster parameters are large.
Both models have some advantages and disadvantages.

The binomial overdispersion model is easy to understand because it has a sim-
ple formula for the expected cluster totals. But it also has the property that the
variance of a cluster average tends to zero when the cluster size tends to infinity,
which seems somewhat unrealistic for the kind of cluster effects we have in mind.
Another disadvantage may be that it does not make much sense, in this model, to
ask whether the between and within cluster effects are the same.

The random effects model is more complicated, because it has random normal
effects on the logit scale, which results in complicated expressions for mean and vari-
ance of cluster sums etc. Moreover, situations where the between and within effects
are expected to be different can only be handled by the somewhat artificial split of
explanatory variables in two. It has, on the other hand, the advantage that it makes
sense to ask (and perform a statistical test to answer) the question of whether a
covariate has “the same” effect within and between clusters.

If the latter property is considered meaningful, the random effects model should
probably be preferred. If not, we would tend to prefer the simpler “two–stage
method”.
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NB At the end of the text, in this report, we include some material not referred
in the text: figures 2 and 3, sas syntax.

%Mars data;
PROC genmod DATA=WORK.long_11246 descending;
model y = expo/ dist=binomial; run;
PROC genmod DATA=WORK.long_11246 descending;
class househ;
model y = expo househ/ dist=binomial; run;
proc logistic DATA=WORK.long_11246;

strata househ;
model y(event=’1’)= expo/clodds=Wald; run;

proc nlmixed DATA=WORK.long_11246 start;
parms b0= -0.8548 b1=0.0201 sigma=1.0;
eta = b0 + b1*expo + u;
p=exp(eta)/(1 + exp(eta));
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model y ~ binary(p);
random u ~ normal(0,sigma) subject =househ; run;
proc nlmixed DATA=WORK.long_11246 start;
parms b0= -0.9653 b1=0.0437 b2=0.0042 sigma=1.0;
eta = b0 + b1*expo_househ + b2*expo_d + u;
p=exp(eta)/(1 + exp(eta));
model y ~ binary(p);
random u ~ normal(0,sigma) subject =househ; run;
PROC genmod DATA=WORK.long_household;
model y_sum/n_break = expo_househ/dist=binomial scale=pearson;
run;
%Children data;
libname datos ’c:\Eslava_07\clogit’;
PROC genmod DATA=datos.finfil1f_m17865 descending;
model wfa2 = foodexp persroom agemoth floor01 wc01_psu wc01_d cooker01

schoolm01_psu schoolm01_d languagem01
/dist=binomial;

run;
proc nlmixed DATA=datos.finfil1f_m17865 start;
parms b0= -2.3299 b1=-0.006 b2= 0.0543 b3=-0.0083

b4= 0.2045 b5= 0.5122 b6=0.0472 b7=0.3422 b8=0.7601
b9=0.1683 b10=0.4143
sigma=0.5;

eta = b0 + b1*foodexp + b2*persroom + b3*agemoth +
b4*floor01 + b5*wc01_psu + b6*wc01_d +
b7*cooker01 +
b8*schoolm01_psu + b9*schoolm01_d +
b10*languagem01 + u;

p=exp(eta)/(1 + exp(eta));
model wfa2 ~ binary(p);
random u ~ normal(0,sigma) subject =psu;
estimate ’wc01_psu-wc01_d’ b5 - b6;
estimate ’schoolm01_psu-schoolm01_d’ b8 - b9;
run;
*Rerun Conditional and binomial to save parameter values on outfile;
proc logistic data=datos.finfil1f_m17865 covout outest=datos.cond_pars simple;

strata psu/info;
model wfa2(event=’1’)= foodexp persroom agemoth floor01
wc01 cooker01 schoolm01 languagem01/clodds=Wald;

run;
*Rerun nonlinear regression to save parameter values on outfile;
PROC genmod DATA=datos.finfil1f_m17865_psu;
model event/n_break = foodexp_psu persroom_psu agemoth_psu floor01_psu wc01_psu

cooker01_psu schoolm01_psu languagem01_psu/dist=binomial scale=pearson;
run;
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Table 1: Panel data. Between and within households effects. Parameter estimates
and standard errors for three models. An overdispersion binomial model, a con-
ditional logistic regression, and a logistic regression with random intercepts with
explanatory variable values split into household mean and deviation to its house-
hold mean

Variable Two–stage One–stage
modelling modelling

Overdispersed1 Conditional2 Logistic regression3

binomial model logistic reg. with rand. int.
Intercept -.9653 (.1143) -1.0468∗∗ (.1804)
x̄h. .0437 (.0205) -.01061 (.0318)
xhi − x̄h. .00802 (.00795) .00797 (.00793)

1 Model adjusted using 560 observations (households) sumarized from 11,246 purchases.
Estimated scale parameter

√
λ̂ =

√
χ2/df =

√
4832.29/558=2.9428

2 Model adjusted using 9,757 observations (purchases) grouped into 302 households.
3 Model adjusted using 11,246 observations (purchases) grouped into 560 households.
Estimated variance for the random intercept σ̂2 =4.56.
∗∗ p <.01
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Table 2: Clustered survey data. Between and within towns effects. Parameter
estimates and standard errors for three models. An overdispersion binomial model,
a conditional logistic regression, and a logistic regression with random intercepts
with explanatory variable values split into group means and deviations to its group
mean

Variable Two–stage One–stage
modelling modelling

Overdispersed1 Conditional2 Logistic regression3

binomial model logistic reg. with rand. int.
Intercept -2.2921∗∗(.4091) -2.3302∗∗(.4370)
Food expenses x̄1 -.0108∗∗ (.0033) -.01247∗∗(.0034)
Persons per room x̄2 .1530∗∗ (.0447) .1745∗∗ (.0497)
Mother’s age x̄3 -.0161 (.0138) -.0209 (.0145)
No floor layer x̄4 .1541 (.1317) .1144 (.1484)
No wc x̄5 .4149∗∗ (.0926) .4281∗∗ (.1043)
No gas cooker x̄6 .3213∗ (.1429) .2873 (.1518)
Moth. with no sch. x̄7 .6165∗∗ (.1335) .7395∗∗ (.1534)
Bilingual mother x̄8 .4088∗∗ (.0790) .4581∗∗ (.0930)
Food expenses x1 − x̄1 -.0034∗ (.0017) -.0034∗ (.0017)
Persons per room x2 − x̄2 .0470∗∗ (.0118) .0468∗∗ (.0118)
Mother’s age x3 − x̄3 -.0071∗ (.0033) -.0070∗ (.0033)
No floor layer x4 − x̄4 .1982∗∗ (.0548) .1987∗∗ (.0549)
No wc x5 − x̄5 .0853 (.0575) .0833 (.0575)
No gas cooker x6 − x̄6 .2569∗∗ (.0674) .2605∗∗ (.0675)
Moth. with no sch. x7 − x̄7 .1967∗∗ (.0547) .1980∗∗ (.0549)
Bilingual mother x8 − x̄8 .2868∗∗ (.1050) .3015∗∗ (.1065)

1 Model adjusted using 853 observations (towns), summarized from 17,865 children.
Estimated scale parameter

√
λ̂ =

√
χ2/df =

√
1425.17/844=1.2995

2 Model adjusted using 15,727 observations (children), grouped into 714 towns.
3 Model adjusted using 17,865 observations (children) grouped into 853 towns. Estimated
variance for the random intercepts σ̂2 =.2765
∗ .01 < p <.05 ∗∗ p <.01
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Figure 1: Between and within towns effects. Parameter estimates and 95% confidence
intervals, for each of the eight variables associated with an increase in the probability of
a child being malnourished. Between and Within towns effects estimated simultaneously
with a logistic regression with random cluster effect with explanatory variable values split
into cluster means and deviations to its cluster mean. Eq. 2
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Figure 2: Within- and between– towns effects. Parameter estimates and 95% confidence
intervals, for each of the eight variables associated with an increase in the probability of
a child being malnourished. Within– towns effects estimated with a conditional logistic
regression, and between–towns effects with an overdispersed binomial model.
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Figure 3: Average population effects. Parameter estimates and 95% confidence intervals,
for each of the eight variables associated with an increase in the probability of a child being
malnourished. Estimates calculated with two models: a weighted average of estimates
from within towns effects (conditional logistic regression) and estimates from between
towns effects (overdispersed binomial model); and with a logistic regression with random
intercepts.
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